miércoles, 21 de agosto de 2013

UNIDAD NRO. 6. NUMERO DE OXIDACIÓN Y NOMENCLATURA QUÍMICA

Lectura comprensiva de la unidad 6 del libro: 

Temas de Química General

Editorial Eudeba

Tareas a realizar:

Una vez realizada la lectura de la unidad indicada, realizar la ejercitación indicada en las páginas 234, 235 y 236 de dicho libro.

martes, 28 de mayo de 2013

Unidad 3: Estructura Atómica. Unidad 4: Clasificación Periódica


Estructura atómica

En el siglo V antes de Cristo, el filósofo griego Demócrito postuló, sin evidencia científica, que el Universo estaba compuesto por partículas muy pequeñas e indivisibles, que llamó "átomos".

Átomo, la unidad más pequeña posible de un elemento químico. En la filosofía de la antigua Grecia, la palabra “átomo” se empleaba para referirse a la parte de materia más pequeño que podía concebirse. Esa “partícula fundamental”, por emplear el término moderno para ese concepto, se consideraba indestructible. De hecho, átomo significa en griego “no divisible”. El conocimiento del tamaño y la naturaleza del átomo avanzó muy lentamente a lo largo de los siglos ya que la gente se limitaba a especular sobre él.

Sin embargo, los avances científicos de este siglo han demostrado que la estructura atómica integra a partículas más pequeñas.

 

Así una definición de átomo sería:

El átomo es la parte más pequeña en la que se puede obtener materia de forma estable, ya que las partículas subatómicas que lo componen no pueden existir aisladamente salvo en condiciones muy especiales. El átomo está formado por un núcleo, compuesto a su vez por protones y neutrones, y por una corteza que lo rodea en la cual se encuentran los electrones, en igual número que los protones.

Protón, descubierto por Ernest Rutherford a principios del siglo XX, el protón es una partícula elemental que constituye parte del núcleo de cualquier átomo. El número de protones en el núcleo atómico, denominado número atómico, es el que determina las propiedades químicas del átomo en cuestión. Los protones poseen carga eléctrica positiva y una masa 1.836 veces mayor de la de los electrones.

Neutrón, partícula elemental que constituye parte del núcleo de los átomos. Fueron descubiertos en 1930 por dos físicos alemanes, Walter Bothe y Herbert Becker. La masa del neutrón es ligeramente superior a la del protón, pero el número de neutrones en el núcleo no determina las propiedades químicas del átomo, aunque sí su estabilidad frente a posibles procesos nucleares (fisión, fusión o emisión de radiactividad). Los neutrones carecen de carga eléctrica, y son inestables cuando se hallan fuera del núcleo, desintegrándose para dar un protón, un electrón y un antineutrino.

Electrón, partícula elemental que constituye parte de cualquier átomo, descubierta en 1897 por J. J. Thomson. Los electrones de un átomo giran en torno a su núcleo, formando la denominada corteza electrónica. La masa del electrón es 1836 veces menor que la del protón y tiene carga opuesta, es decir, negativa. En condiciones normales un átomo tiene el mismo número de protones que electrones, lo que convierte a los átomos en entidades eléctricamente neutras. Si un átomo capta o pierde electrones, se convierte en un ion.

Los científicos y el átomo

Ernest Rutherford, científico nacido en Nueva Zelandia, demostró en 1911 la existencia del núcleo atómico, complementando el conocimiento del electrón, descubierto en 1897 por J.J. Thompson. Desde entonces, múltiples experiencias han demostrado que el núcleo está compuesto por partículas más pequeñas, los protones y neutrones. Y en 1963, Murray Gell-Mann postuló que protones y neutrones están compuestos por partículas aún más pequeñas, a las que llamó "quarks".

La experiencia de Rutherford fue crucial en la determinación de la estructura atómica. Los párrafos que siguen son un extracto de su propia comunicación (1911):

"Es un hecho bien conocido que las partículas alfa y beta sufren desviaciones de sus trayectorias rectilíneas a causa de las interacciones con los átomos de la materia.

Parece indudable que estas partículas de movimiento veloz pasan en su recorrido a través de los átomos, y las desviaciones observadas son debidas al campo eléctrico dentro del sistema atómico.

Las observaciones de Geiger y Mardsen sobre la dispersión de partículas alfa, indican que algunas de estas partículas deben de experimentar en un solo encuentro desviaciones superiores a un ángulo recto.

Un cálculo simple demuestra que el átomo debe de ser asiento de un intenso campo eléctrico para que se produzca una gran desviación en una colisión simple..."

 

En aquella época Thomson había elaborado un modelo de átomo consistente en un cierto número N de corpúsculos cargados negativamente, acompañados de una cantidad igual de electricidad positiva distribuida uniformemente en toda una esfera. Rutherford pone a prueba este modelo y sugiere el actual modelo de átomo.

"La teoría de Thomson está basada en la hipótesis de que la dispersión debida a un simple choque atómico es pequeña y que la estructura supuesta para el átomo no admite una desviación muy grande de una partícula alfa que incida sobre el mismo, a menos que se suponga que el diámetro de la esfera de electricidad positiva es pequeño en comparación con el diámetro de influencia del átomo.

Puesto que las partículas alfa y beta atraviesan el átomo, un estudio riguroso de la naturaleza de la desviación debe proporcionar cierta luz sobre la constitución del átomo, capaz de producir los efectos observados. En efecto, la dispersión de partículas cargadas de alta velocidad por los átomos de la materia constituyen uno de los métodos más prometedores de ataque del problema.."

En la simulación de la experiencia de Rutherford, consideramos una muestra de un determinado material a elegir entre varios y la situamos en el centro de un conjunto de detectores dispuestos a su alrededor. El blanco es bombardeado por partículas alfa de cierta energía producidas por un material radioactivo. Se observa que muy pocas partículas son desviadas un ángulo apreciable, y se producen muy raramente sucesos en los que la partícula alfa retrocede.

Un poco de historia

Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego atomos, indivisible).

El modelo de Dalton

En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.


Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.

El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas , se dedujo la distribución de la carga eléctrica al interior de los átomos.

Constitución del átomo y modelos atómicos

La descripción básica de la constitución atómica, reconoce la existencia de partículas con carga eléctrica negativa, llamados electrones, los cuales giran en diversas órbitas (niveles de energía) alrededor de un núcleo central con carga eléctrica positiva. El átomo en su conjunto y sin la presencia de perturbaciones externas es eléctricamente neutro.

El núcleo lo componen los protones con carga eléctrica positiva, y los neutrones que no poseen carga eléctrica.

El tamaño de los núcleos atómicos para los diversos elementos están comprendidos entre una cienmilésima y una diezmilésima del tamaño del átomo.

La cantidad de protones y de electrones presentes en cada átomo es la misma. Esta cantidad recibe el nombre de número atómico, y se designa por la letra "Z". A la cantidad total de protones más neutrones presentes en un núcleo atómico se le llama número másico y se designa por la letra "A".

Si designamos por "X" a un elemento químico cualquiera, su número atómico y másico se representa por la siguiente simbología:

ZXA

Por ejemplo, para el Hidrógeno tenemos: 1H1.

Si bien hoy en día todas las características anteriores de la constitución atómica son bastante conocidas y aceptadas, a través de la historia han surgido diversos modelos que han intentado dar respuesta sobre la estructura del átomo.

Algunos de tales modelos son los siguientes:

a) El Modelo de Thomson.

Thomson sugiere un modelo atómico que tomaba en cuenta la existencia del electrón, descubierto por él en 1897. Su modelo era estático, pues suponía que los electrones estaban en reposo dentro del átomo y que el conjunto era eléctricamente neutro. Con este modelo se podían explicar una gran cantidad de fenómenos atómicos conocidos hasta la fecha. Posteriormente, el descubrimiento de nuevas partículas y los experimentos llevado a cabo por Rutherford demostraron la inexactitud de tales ideas.

b) El Modelo de Rutherford.

Basado en los resultados de su trabajo que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.

El modelo de Rutherford tuvo que ser abandonado, pues el movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.

c) El Modelo de Bohr.

El físico danés Niels Bohr ( Premio Nobel de Física 1922), postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida (por ejemplo en forma de radiación). Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear.

d) Modelo Mecano - Cuántico.

Se inicia con los estudios del físico francés Luis De Broglie, quién recibió el Premio Nobel de Física en 1929. Según De Broglie, una partícula con cierta cantidad de movimiento se comporta como una onda. En tal sentido, el electrón tiene un comportamiento dual de onda y corpúsculo, pues tiene masa y se mueve a velocidades elevadas. Al comportarse el electrón como una onda, es difícil conocer en forma simultánea su posición exacta y su velocidad, por lo tanto, sólo existe la probabilidad de encontrar un electrón en cierto momento y en una región dada en el átomo, denominando a tales regiones como niveles de energía. La idea principal del postulado se conoce con el nombre de Principio de Incertidumbre de Heisenberg.

Configuración electrónica

 

Al referirnos a la configuración electrónica (o periódica) estamos hablando de la descripción de la ubicación de los electrones en los distintos niveles (con subniveles y orbitales) de un determinado átomo.


.

Configurar significa "ordenar" o "acomodar", y electrónico deriva de "electrón"; así, configuración electrónica es la manera ordenada de repartir los electrones en los niveles y subniveles de energía.

Científicamente, diremos que es la representación del modelo atómico de Schrödinger o modelo de la mecánica cuántica. En esta representación se indican los niveles, subniveles y los orbitales que ocupan los electrones.

Debemos acotar que aunque el modelo de Schrödinger es exacto sólo para el átomo de hidrógeno, para otros átomos es aplicable el mismo modelo mediante aproximaciones muy buenas.

Para comprender (visualizar o graficar) el mapa de configuración electrónica (o periódica) es necesario revisar los siguientes conceptos.
Los Números Cuánticos

En el contexto de la mecánica cuántica, en la descripción de un átomo se sustituye el concepto de órbita por el de orbital atómico. Un orbital atómico es la región del espacio alrededor del núcleo en el que la probabilidad de encontrar un electrón es máxima.

La solución matemática de la ecuación de Schrödinger precisa de tres números cuánticos. Cada trío de valores de estos números describe un orbital.

Número cuántico principal (n): puede tomar valores enteros (1, 2, 3, 4, 5, 6, 7) y coincide con el mismo número cuántico introducido por Bohr. Está relacionado con la distancia promedio del electrón al núcleo en un determinado orbital y, por tanto, con el tamaño de este e indica el nivel de energía.

Número cuántico secundario (l): Los niveles de energía, identificados con el número cuántico principal (n), poseen subniveles, los cuales se asocian, además, a la forma del orbital, y son identificados por el número cuántico secundario (l). Entonces, los valores del número cuántico secundario dependen del número cuántico principal "n".

Así, la cantidad de subniveles de energía que posea cada nivel principal está dada por la fórmula n – 1 (el valor del número cuántico principal menos uno).

Este número cuántico secundario (l) nos indica en que subnivel se encuentra el electrón, y toma valores desde 0 hasta (n - 1), recordando que n es el valor del número cuántico principal. Así, para cada nivel n, el número cuántico secundario (l) será:

l = 0, 1, 2, 3,…, n-1.

Ejemplo:

Si n = 1 (n – 1 = 0), entonces l = 0 (en el nivel de energía 1 no hay subniveles de energía, y para efectos de comprensión se considera este nivel 1 como subnivel 0)

Si n = 2 (n -1 = 1), entonces l = 0, 1. El nivel de energía 2 posee dos subniveles, identificados como 0 y 1

Si n = 3 (n – 1 = 2), entonces l = 0, 1, 2. El nivel de energía 3 posee tres subniveles, identificados como 0, 1 y 2

Si n = 4 (n – 1 = 3), entonces l = 0, 1, 2, 3. El nivel de energía 4 posee cuatro subnoiveles, identificados como 0, 1, 2 y 3

Si n = 5 (n – 1 = 4), entonces l = 0, 1, 2, 3, 4. El nivel de energía 5 posee cinco subnoveles, identificados como 0, 1, 2, 3 y 4

También para efectos de comprensión, la comunidad científica ha aceptado que los números que representan los subniveles (0, 1, 2, y 3) sean reemplazados por las letras s, p, d y f, respectivamente, para representar los distintos tipos de orbitales.

Estas letras se obtiene de la inicial de las palabras sharp (s), principal (p), difuso (d) y fundamental (f).

Cada subnivel, a su vez, posee distinta cantidad de orbitales, lo cual veremos más adelante.

Ahora, con respecto a la forma del orbital de estos subniveles, el número cuántico secundario (o azimutal) determina la excentricidad de la órbita: cuanto mayor sea este número, más excéntrica será la órbita; es decir, será más aplanada la elipse que recorre el electrón.

Así, en el nivel 1 (o capa K) el valor del nivel (identificado como subnivel 0) es cero (no hay excentricidad) y su órbita es circular.

Cada vez que aumenta el valor del número cuántico secundario (o azimutal) aumenta la excentricidad de la órbita, como se demuestra en el siguiente gráfico:

Número cuántico magnético (ml): puede tener todos los valores desde – l hasta + l pasando por cero. Describe la orientación espacial del orbital e indica el número de orbitales presentes en un subnivel determinado.

Para explicar determinadas características de los espectros de emisión se consideró que los electrones podían girar en torno a un eje propio, bien en el sentido de las agujas del reloj o en el sentido contrario. Para caracterizar esta doble posibilidad se introdujo el número cuántico de espín (ms) que toma los valores de + ½ o – ½..


Para entender el concepto de configuración electrónica es necesario asumir o aplicar dos principios importantes:

Principio de Incertidumbre de Heisenberg: “Es imposible determinar simultáneamente la posición exacta y el momento exacto del electrón”
 
Principio de Exclusión de Pauli: “Dos electrones del mismo átomo no pueden tener los mismos números cuánticos idénticos y por lo tanto un orbital no puede tener más de dos electrones”.

Tipos de configuración electrónica

Para graficar la configuración electrónica existen cuatro modalidades, con mayor o menor complejidad de comprensión, que son:

 

Configuración estándar

Se representa la configuración electrónica que se obtiene usando el cuadro de las diagonales (una de sus formas gráficas se muestra en la imagen de la derecha).

Es importante recordar que los orbitales se van llenando en el orden en que aparecen, siguiendo esas diagonales, empezando siempre por el 1s.

Aplicando el mencionado cuadro de las diagonales la configuración electrónica estándar, para cualquier átomo, es la siguiente:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6

Más adelante explicaremos cómo se llega este enjambre de números y letras que perturba inicialmente, pero que es de una simpleza sorprendente.

 

Configuración condensada

Los niveles que aparecen llenos en la configuración estándar se pueden representar con un gas noble (elemento del grupo VIII A, Tabla Periódica de los elementos), donde el número atómico del gas coincida con el número de electrones que llenaron el último nivel.

Los gases nobles son He, Ne, Ar, Kr, Xe y Rn.

 

 

Configuración desarrollada

Consiste en representar todos los electrones de un átomo empleando flechas para simbolizar el spin de cada uno. El llenado se realiza respetando el principio de exclusión de Pauli y la Regla de máxima multiplicidad de Hund.
Configuración semidesarrollada

Esta representación es una combinación entre la configuración condensada y la configuración desarrollada. En ella sólo se representan los electrones del último nivel de energía.

Niveles de energía o capas

Si repasamos o recordamos los diferentes modelos atómicos veremos que en esencia un átomo es parecido a un sistema planetario. El núcleo sería la estrella y los electrones serían los planetas que la circundan, girando eso sí (los electrones) en órbitas absolutamente no definidas, tanto que no se puede determinar ni el tiempo ni el lugar para ubicar un electrón (Principio de Incertidumbre de Heisenberg).

Los electrones tienen, al girar, distintos niveles de energía según la órbita (en el átomo se llama capa o nivel) que ocupen, más cercana o más lejana del núcleo. Entre más alejada del núcleo, mayor nivel de energía en la órbita, por la tendencia a intercambiar o ceder electrones desde las capas más alejadas.

Entendido el tema de las capas, y sabiendo que cada una de ellas representa un nivel de energía en el átomo, diremos que:

1. Existen 7 niveles de energía o capas donde pueden situarse los electrones para girar alrededor del núcleo, numerados del 1, el más interno o más cercano al núcleo (el que tiene menor nivel de energía), al 7, el más externo o más alejado del núcleo (el que tiene mayor nivel de energía).

Estos niveles de energía corresponden al número cuántico principal (n) y además de numerarlos de 1 a 7, también se usan letras para denominarlos, partiendo con la K. Así: K =1, L = 2, M = 3, N = 4, O = 5, P = 6, Q = 7.

2. A su vez, cada nivel de energía o capa tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f.



Para determinar la configuración electrónica de un elemento sólo hay que saber cuantos electrones debemos acomodar y distribuir en los subniveles empezando con los de menor energía e ir llenando hasta que todos los electrones estén ubicados donde les corresponde. Recordemos que partiendo desde el subnivel s, hacia p, d o f se aumenta el nivel de energía.

3. En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitales d y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7)..

La distribución de niveles, subniveles, orbitales y número de electrones posibles en ellos se resume, para las 4 primera capas, en la siguiente tabla:

Niveles de energía o capa (n)
1 (K)
2 (L)
3 (M)
4 (N)
Tipo de subniveles
s
s p
s p d
s p d f
Número de orbitales en cada subnivel
1
1 3
1 3 5
1 3 5 7
Denominación de los orbitales
1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
Número máximo de electrones en los orbitales
2
2 - 6
2 - 6 - 10
2 - 6 - 10 - 14
Número máximo de electrones por nivel de energía o capa
2
8
18
32


Insistiendo en el concepto inicial, repetimos que la configuración electrónica de un átomo es la distribución de sus electrones en los distintos niveles, subniveles y orbitales. Los electrones se van situando en los diferentes niveles y subniveles por orden de energía creciente (partiendo desde el más cercano al núcleo) hasta completarlos.

Recordemos que alrededor del núcleo puede haber un máximo de siete capas atómicas o niveles de energía donde giran los electrones, y cada capa tiene un número limitado de ellos.

La forma en que se completan los niveles, subniveles y orbitales está dada por la secuencia que se grafica en el esquema conocido como regla de las diagonales:

Es importante saber cuantos electrones existen en el nivel más externo de un átomo pues son los que intervienen en los enlaces con otros átomos para formar compuestos.


 

Regla de las diagonales

Sirve para determinar el mapa de configuración electrónica (o periódica) de un elemento.

En otras palabras, la secuencia de ocupación de los orbitales atómicos la podemos graficar usando la regla de la diagonal, para ello debemos seguir la flecha roja del esquema de la derecha, comenzando en 1s; siguiendo la flecha podremos ir completando los orbitales con los electrones en forma correcta.


En una configuración estándar, y de acuerdo a la secuencia seguida en el grafico de las diagonales, el orden de construcción para la configuración electrónica (para cualquier elemento) es el siguiente:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14 5d10 6p6 7s2 5f14 6d10 7p6

Los valores que se encuentran como superíndices indican la cantidad máxima de electrones que puede haber en cada subnivel (colocando sólo dos en cada orbital de los subniveles).

La Tabla Periódica, punto de partida

En la tabla periódica, entre los datos que encontramos de cada uno de los elementos se hallan el Número atómico y la Estructura electrónica o Distribución de electrones en niveles.

El Número atómico nos indica la cantidad de electrones y de protones que tiene un elemento.

La Estructura electrónica o Distribución de electrones en niveles indica cómo se distribuyen los electrones en los distintos niveles de energía de un átomo (lo que vimos más arriba con la regla de las diagonales).

Pero, si no tengo la tabla periódica para saber cuantos electrones tengo en cada nivel, ¿cómo puedo hacer para averiguarlo?

Ya vimos que la regla de las diagonales ofrece un medio sencillo para realizar dicho cálculo.

Para escribir la configuración electrónica de un átomo es necesario:

Saber el número de electrones que tiene el átomo; para ello basta conocer el número atómico (Z) del átomo en la tabla periódica. Recuerda que el número de electrones en un átomo neutro es igual al número atómico (Z).

Ubicar los electrones en cada uno de los niveles de energía, comenzando desde el nivel más cercano al núcleo (nivel 1).
Respetar la capacidad máxima de cada subnivel (s = 2e-, p = 6e-, d = 10e- y f = 14e-).

 Supongamos que tenemos que averiguar la Distribución electrónica en el elemento sodio, que como su número atómico indica tiene 11 electrones, los pasos son muy sencillos: debemos seguir las diagonales, como se representan más arriba.
 

 
En el ejemplo del sodio sería: 1s2, como siguiendo la diagonal no tengo nada busco la siguiente diagonal y tengo 2s2, como siguiendo la diagonal no tengo nada busco la siguiente diagonal y tengo 2p6, siguiendo la diagonal tengo 3s2.

Siempre debo ir sumando los superíndices, que me indican la cantidad de electrones. Si sumo los superíndices del ejemplo, obtengo 12, quiere decir que tengo un electrón de más, ya que mi suma para ser correcta debe dar 11, por lo que al final debería corregir para que me quedara 3s1.

Por lo tanto, para el sodio (11 electrones), el resultado es: 1s2 2s2 2p6 3s1

Primer nivel: 2 electrones (los 2 en subnivel s, en un orbital);
Segundo nivel: 8 electrones (2 en subnivel s, en un orbital, y 6 en subnivel p, con 2 en cada uno de sus 3 orbitales);
tercer nivel: 1 electrón (ubicado en el subnivel s, en un orbital).


En la tabla periódica podemos leer, respecto al sodio: 2 - 8 - 1

Otros ejemplos:

CLORO: 17 electrones
1s2 2s2 2p6 3s2 3p5
1º nivel: 2 electrones
2º nivel: 8 electrones
3º nivel: 7 electrones
En la tabla periódica podemos leer: 2 - 8 - 7
MANGANESO: 25 electrones
1s2 2s2 2p6 3s2 3p6 4s2 3d5
1º nivel: 2 electrones
2º nivel: 8 electrones
3º nivel: 13 electrones
4º nivel: 2 electrones
En la tabla periódica podemos leer: 2 - 8 - 13 – 2

El superíndice es el número de electrones de cada subnivel (recordando siempre que en cada orbital del subnivel caben solo dos electrones).

El Número máximo de electrones por nivel es 2(n)2 (donde n es la cantidad de subniveles que tiene cada nivel).

Hagamos un ejercicio:

Supongamos que deseamos conocer la configuración electrónica de la plata, que tiene 47 electrones.

Por lo ya aprendido, sabemos que el orden de energía de los orbitales es 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, etc.

En cada subnivel s (que tienen sólo un orbital) cabrán dos electrones.

En cada subnivel p (que tienen 3 orbitales) cabrán 6 electrones.

En cada subnivel d (que tienen 5 orbitales) cabrán 10 electrones.

En cada subnivel f (que tienen 7 orbitales) cabrán 14 electrones.

Siguiendo esta regla debemos colocar los 47 electrones del átomo de plata, la cual debe quedar así::

1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d10, 4p6, 5s2, 4d9

donde sólo se han puesto 9 electrones en los orbitales d (que son cinco) de la capa cuarta para completar, sin pasarse, los 47 electrones de la plata.

Como representar la configuración electrónica de un átomo:

 1.- Conocer su número atómico (sacado de la tabla periódica).

2.- La carga (del átomo o del ión) está dada por número de protones menos (–) número de electrones.

3.- El número de protones es igual al número atómico del elemento (átomo o ión).

4.- En cada átomo hay (en estado eléctrico neutro) igual número de protones que de electrones.

Por ejemplo, el ión Mg+2 (magnesio más dos), averiguamos o sabemos que su número atómico (Z) es 12, significa que tiene 12 protones y debería tener 12 electrones, pero como el ión de nuestro ejemplo (Mg+2) tiene carga +2 (porque perdió o cedió 2 electrones), hacemos

12 (protones) – X = 2

Por lo tanto X (número de electrones del ión Mg+2) es igual a 10,

El ión Mg+2 tiene 10 electrones.

¿Cómo se determina su configuración electrónica o lo que es lo mismo cómo se distribuyen esos electrones en los orbitales del átomo?

Empezamos por el nivel inferior (el más cercano al núcleo): 1, que sólo tiene un orbital s, y sabemos que cada orbital tiene como máximo 2 electrones (1s2).

Pasamos al segundo nivel, el 2, en el cual encontramos orbitales s (uno) y orbitales p (tres) (2s y 2p 2p 2p).

En 2s hay sólo 2 electrones: 2s2 y en cada 2p hay dos electrones: 1s2 2s2 2p6 (este 2p6 es los mismo que 2p2 + 2p2 + 2p2= 2p6)

Otro ejemplo:

Configuración electrónica del fósforo (P)

Nº atómico Z = 15

15 protones y 15 electrones

1s2 2s2 2p6 3s2 3p3

Relación de la Configuración electrónica con la Tabla Periódica

De modo inverso, si tenemos o conocemos la configuración electrónica de un elemento podemos predecir exactamente el número atómico, el grupo y el período en que se encuentra el elemento en la tabla periódica.

Por ejemplo, si la configuración electrónica de un elemento es 1s2 2s2 2p6 3s2 3p5, podemos hacer el siguiente análisis:

Para un átomo la suma total de los electrones es igual al número de protones; es decir, corresponde a su número atómico, que en este caso es 17. El período en que se ubica el elemento está dado por el máximo nivel energético de la configuración, en este caso corresponde al período 3, y el grupo está dado por la suma de los electrones en los subniveles s y p del último nivel; es decir, corresponde al grupo 7.

Propiedades Periódicas
 
                             Energía de ionización

- La energía de ionización es la energía mínima necesaria para que un átomo gaseoso en su estado fundamental o de menor energía, separe un electrón de este átomo gaseoso y así obtenga un ión positivo gaseoso en su estado fundamental:

Las energías de ionización de los elementos de un período aumentan al incrementarse el número atómico. Cabe destacar que las energías de ionización de los gases nobles (grupo 8A) son mayores que todas las demás, debido a que la mayoría de los gases nobles son químicamente inertes en virtud de sus elevadas energías de ionización. Los elementos del grupo 1A (los metales alcalinos) tienen las menores energías de ionización.

 
Cada uno de estos elementos tiene un electrón en la última capa, el cual es energéticamente fácil de quitar (a partir de ahí, es posible diferenciar entre energía de ionización 1, 2 y 3), por ello los elementos de este grupo forman cationes (iones positivos).

Dentro de un grupo, la energía o potencial de ionización disminuye a medida que aumenta el número atómico, es decir de arriba abajo. Esto se debe a que en elementos más grandes la fuerza con la que están unidos los electrones es mayor que en átomos más pequeños, y para sacar un electrón se requiere más energía. Las energías de ionización de los elementos de un periodo aumentan al incrementarse el número atómico. Cabe destacar que las energías de ionización de los gases nobles (grupo 8A) son mayores que todas las demás, debido a que la mayoría de los gases nobles son químicamente inertes en virtud de sus elevadas energías de ionización. Los elementos del grupo 1A (los metales alcalinos) tienen las menores energías de ionización.

 
Cada uno de estos elementos tiene un electrón en la última capa, el cual es energéticamente fácil de quitar (a partir de ahí, es posible diferenciar entre energía de ionización 1, 2 y 3), por ello los elementos de este grupo forman cationes (iones positivos).

Dentro de un grupo, la energía o potencial de ionización disminuye a medida que aumenta el número atómico, es decir de arriba abajo. Esto se debe a que en elementos más grandes la fuerza con la que están unidos los electrones es mayor que en átomos más pequeños, y para sacar un electrón se requiere más energía.


Electronegatividad
- La afinidad electrónica es el cambio de energía cuando un átomo acepta un electrón en el estado gaseoso:

Entre más negativa sea la afinidad electrónica, mayor será la tendencia del átomo a aceptar (ganar) un electrón. Los elementos que presentan energías más negativas son los halógenos (7A), debido a que la electronegatividad o capacidad de estos elementos es muy alta.

La afinidad electrónica no presenta un aumento o disminución de forma ordenada dentro de la tabla periódica, más bien de forma desordenada, a pesar de que presenta algunos patrones como por ejemplo que los no metales poseen afinidades electrónicas más bajas que los metales. En forma global es posible encontrar un estándar de variación parecido al de la energía de ionización.

-        Electronegatividad: Tendencia que presenta un átomo a atraer electrones de otro cuando forma parte de un compuesto. Si un átomo atrae fuertemente electrones, se dice que es altamente electronegativo, por el contrario, si no atrae fuertemente electrones el átomo es poco electronegativo. Cabe destacar, que cuando un átomo pierde fácilmente sus electrones, este es denominado “electropositivo”. La electronegatividad posee relevancia en el momento de determinar la polaridad de una molécula o enlace, así como el agua (H2O) es polar, en base a la diferencia de electronegatividad entre Hidrógeno y Oxígeno.


En la tabla periódica la electronegatividad aumenta de izquierda a derecha en un período y de abajo hacia arriba en un grupo.

                                        Radio atómico


- Radio atómico: es la mitad de la distancia entre dos núcleos de dos átomos adyacentes. Numerosas propiedades físicas, incluyendo la densidad, el punto de fusión, el punto de ebullición, están relacionadas con el tamaño de los átomos. Los radios atómicos están determinados en gran medida por cuán fuertemente atrae el núcleo a los electrones. A mayor carga nuclear efectiva los electrones estarán más fuertemente enlazados al núcleo y menor será el radio atómico. Dentro de un periodo, el radio atómico disminuye constantemente debido a que aumenta la carga nuclear efectiva. A medida que se desciende en un grupo el radio aumenta según aumenta el número atómico.


                                          Radio iónico

- Radio iónico: es el radio de un catión o de un anión. El radio iónico afecta las propiedades físicas y químicas de un compuesto iónico. Por ejemplo, la estructura tridimensional de un compuesto depende del tamaño relativo de sus cationes y aniones. Cuando un átomo neutro se convierte en un ión, se espera un cambio en el tamaño. Si el átomo forma un anión, su tamaño aumenta dado que la carga nuclear permanece constate pero la repulsión resultante entre electrones extiende el dominio de la nube electrónica. Por otro lado, un catión es más pequeño que su átomo neutro, dado que quitar uno o más electrones reduce la repulsión electrón–electrón y se contrae la nube electrónica. El radio iónico aumenta de acuerdo al radio atómico, es decir a lo largo de un periodo aumenta conforme el número atómico, y en un grupo aumenta hacia abajo.

Ejercitación:

 
 
1) Completar el siguiente cuadro:
 
 
 
 
Símbolo
Z
A
p
e-
N
Configuración Electrónica
C
6
 
 
 
6
 
Fe
 
56
26
 
 
 
S
 
32
 
 
16
 
K+
 
 
 
 
20
1s22s22p63s23p6
O-2
 
 
 
10
8
 
Mn
25
55
 
 
 
 
Ag
 
108
 
 
 
[Kr] 5s2 4d9
Rb+
 
85
37
 
 
 
Zn
 
 
30
 
35
 

 
 

 
2- a) Escriba la configuración electrónica de: Sr ;  Cr ;   I ; Cl

    b) Clasifique y explique a qué grupo, período y bloque de la Tabla Periódica pertenece cada uno

 

3-a)Considerar las siguientes configuraciones electrónicas:

a) 1s22s22p63s23p64s2 3d7                            b) 1s22s22p63s23p4               

c) 1s22s22p63s23p64s23d104p65s2

3)-b)Explicar cuál o cuáles corresponden a elementos representativos y cuál o cuáles a elementos de transición. Indicar grupo y período.

 

4-  Defina electronegatividad y compare valores para Cr- As- Br. Justifique su respuesta.

 

5- Dados los siguientes pares de especies químicas:           

a -    Fe3+  y  Mn2+                            b -     Ca    y   Mg                             

c -      S   y    Cl                                 d -       Cl-  y   Br-                             

e-        Cl    y    Cl-

a) Explique en cada par qué entidad química tiene mayor: tamaño atómico y/o tamaño iónico

 

6- Indique el grupo, período y tipo de elemento para los átomos que tienen las siguientes configuraciones electrónicas :
a)
1s22s22p63s23p5
b)
1s22s22p63s23p64s2
c)
1s22s22p63s23p64s2 3d2
d)
1s22s22p63s23p64s23d104p6

7) De los ejemplos anteriores, indicar que tipo de unión puede haber entre el elemento a y el b; y entre el elemento a y el c. Justificar.

 

8) Dada la especie:

A=56 z=26X

Indique i) ¿Cuántos protones, neutrones y electrones posee?, ii) escriba la configuración electrónica correspondiente, iii) Indique si tendrá o no propiedades metálicas.

9) Qué es un isótopo.

10) Realizar la configuración electrónica de los elementos cuyo Z se indican a continuación:

a) Z= 27

b) Z= 35

c) Z= 19

Indicar grupo, período, si es representativo, halógeno, gas inerte, alcalino, alcalino terreo o elemento de transición.